Workshop 1

J. Michalek

UK-Adaption batteriebetriebener Kleingeräte - So gehts!

In diesem Workshop wird eine Strategie für den Umbau handelsüblicher Kleingeräte/Spielzeuge (Achtung: max. Betriebsspannung 12V!!!) vorgestellt und anschließend mit Lötkolben und Werkzeug umgesetzt. Gerne darf ein Spielzeug/Gerät mitgebracht werden, dass wir dann gemeinsam für die 3,5mm Klinkenstecker der UK-Taster anpassen. Vorerfahrung: Keine - Mut im Umgang mit Lötkolben und Werkzeug vorausgesetzt...
Vorwort:

Der Erwerb von adaptierte Geräte, die für den UK- Taster verwendbar sind, ist oft kostspielig bis nicht verfügbar. Der Workshop soll(te):

- Mut machen, eigenaktiv zu werden, um UK- Umbauten selbst vorzunehmen
- Kosten sparen
- Eine echte „Inklusion“ darstellen, da (fast) jedes handelsübliche Kleingerät adaptiert werden kann
- Eine Ideenbörse darstellen
- Strategien vermitteln, wie Adaptionen umzusetzen sind
- Grundlagen vermitteln

Ich bin nicht „ehrenkäsig“. Das Skript darf gerne (auch auszugsweise) ohne vorherige Rückfrage weitergegeben werden. Im Kontext stehende rechtliche Hinweise müssen drin bleiben! Da die „isaac e.v.“ jedoch Veranstalter des Fachtags (mit sehr guter Organisation) ist/war, wäre es gerecht, zumindest sie als Quelle zu nennen. Ob mein Name genannt wird, bleibt euch überlassen...

Im Skript enthalten:

Inhaltsverzeichnis
Um diese geht’s: Unsere UK-Taster... 4
Taster allgemein und Bauformen.. 5
Grundlagen eines einfachen Stromkreises... 6
Prinzip der Adaption.. 7
Hintergrundwissen: Parallelschaltung und Reihenschaltung......................... 8
 Die Parallelschaltung:.. 8
 Die Reihenschaltung:.. 9
Taster und Schalter.. 10
Das Prinzip der Batterieunterbrechung.. 10
Batterieunterbrecher selber herstellen.. 11
 Variante 1... 11
 Variante 2... 11
 Variante 3... 13
Kabel verbinden ohne löten... 14
Die erste Adaption.. 15
Das Beispiel der LED-Lampe übertragen... 16
Sensor statt Taster / Schalter... 16
Steuern anstelle des Ein- und Ausschaltens.. 17
UK Adaption CD-Radio... 18
Eine außergewöhnliche Adaption.. 26
Computermaus adaptieren... 28
 Variante 2... 30
Neues Schaffen – Eigene Ideen und „Patente“ entwerfen............................... 31
 Beispiel: LED-Würfel.. 31
 Bausatz: Voice-Recorder.. 32
 Variante zum Sprachaufzeichnungsmodul.. 33
 Bausatz: Näherungsschalter.. 34
Adaption Fernbedienung.. 35
 Alternative:... 37
Bezugsquellen... 38
Um diese geht’s: Unsere UK- Taster

Es hat sich sicher noch niemand getraut, einen (teuren) UK- Taster zu öffnen und das Innenleben zu betrachten. Daher hab ich euch diese Arbeit übernommen:

UK- Taster mit 3,5mm Klinkenstecker
Hier: Gelbe Kappe abmontiert. Das braune Teil in der Mitte ist der eigentliche Taster

Aus der Nähe:

Nur 2 Kontakte des Tasters sind benutzt.

Technische Daten des Tasters:
Max Spannung 230V
Max Strom 5 Ampere

Funktionsweise unseres UK- Tasters:
Der Taster funktioniert als sogenannter Schließer. Heißt: Wird die Taste gedrückt, werden beide Kabel durch den Taster verbunden oder kurzgeschlossen. Lässt man den Taster los, so geht er wieder in die unterbrochene Ausgangsstellung zurück.

Also: Beide Kabeladern, die aus dem Taster herausgeführt sind, haben im Ruhezustand keine Verbindung zueinander, sind unterbrochen. Wird der Taster gedrückt, so sind beide Kabel miteinander verbunden.

Um den Taster an verschiedene Geräte nutzen zu können, ist ein Stecker mit 2 Pole (3,5mm Klinkenstecker Mono ist die technische Bezeichnung) dran. Dieser passt in eine 3,5mm Klinkenbuchse Mono. Diese Stecker kommen ursprünglich aus dem Audiobereich, genauer: Das sind eigentlich Kopfhörerstecker. Daher Mono (2 Pole / Felder) und Stereo (Die haben 3 Pole / Felder).
In der Elektronik werden Symbole für die Darstellung verwendet. Es macht Sinn, euch einige einfache Symbole zu zeigen. So können später Schaltpläne der einfachen Adaption besser verstanden werden.

Taster allgemein und Bauformen

Es gibt in technischen Geräten zig Tausende Bauformen von irgendwelchen Tastern. Sie funktionieren aber alle nach dem selben Prinzip: Sie schließen (oder öffnen) einen Stromkreis, solange sie gedrückt werden und gehen selbstständig wieder in ihre Ausgangsstellung zurück.

Nun, jetzt eröffnen sich euch hunderte Möglichkeiten für denkbare UK- Adaptionen!!
Grundlagen eines einfachen Stromkreises:
Beispiel: LED- Lampe (LED= Light Emitting Diode = Lichtausstrahlende Diode)

Damit dieser einfache Stromkreis funktionieren kann, benötigt er im Prinzip nur zwei wesentliche Bauteile:
- Die Spannungsversorgung
- Die LED

Schließt man die Spannungsversorgung an der LED an, so leuchtet sie (eben dauerhaft), bis die Batterie erschöpft ist. Deshalb haben nahezu alle Geräte einen Ein/Aus- Schalter oder Taster, damit die LED nur dann leuchtet, wenn wir sie einschalten. (Bei einer Wanduhr würde ein Schalter keinen Sinn machen ;-))

Unsere LED- Lampe sieht dann so aus:

Ansicht unten

Ansicht oben

Batteriefach & Schalter

Anschlüsse der Batterie, des Schalters und die Leuchtdiode. Vom Batterieanschluss zum Schalter ist hier ein Widerstand, ein elektronisches Bauteil verbaut. Die Versorgungsspannung wäre ohne Widerstand für die LED zu hoch.

Betätige ich den Schalter, dann verbindet dieser die beiden Anschlüsse, an denen die Kabel angelötet sind, miteinander. Der Stromkreis ist geschlossen, die LED leuchtet. Das Selbe gilt, wenn ich die beiden Kontakte mit einem Schraubendreher, etc. kurzschließe.
Schemazeichnung und Schaltplan:

Anm.: Der Widerstand ist hier an anderer Stelle eingezeichnet. Ist bei dieser Schaltung genauso richtig...

Prinzip der Adaption

Nun haben wir unseren Taster kennen gelernt und einen einfachen Stromkreis. Wenn wir diese nun verbinden, haben wir die erste UK-Adaption:

- Der Schalter schaltet unsere Lampe ein und aus
- Der Taster schließt den Stromkreis kurz

Der UK-Taster soll nun, solange er gedrückt wird, den Schalter kurzschließen. Die Schemazeichnung und der Schaltplan sieht dann so aus:

Ist der Schalter auf „An“, so hat der Taster keinen Einfluss, da der Stromkreis durch den Schalter geschlossen ist, die LED leuchtet. Ist der Schalter aus, und der Taster wird gedrückt, überbrückt der Taster allerdings den Schalter und die LED leuchtet.
Hintergrundwissen: Parallelschaltung und Reihenschaltung

Für die Vorstellung, wie ein Gerät adaptiert werden kann, sind zwei grundlegende Schaltungsvarianten unerlässlich:

Die Parallelschaltung:

Grundfunktion der linken Schaltung

Schwarzer Stromkreis:

Nun wird parallel zum Gerätetaster unser UK-Taster angeschlossen. **Parallelschaltung**

Funktion der neuen Schaltung.
- Im Ruhezustand, beide Taster offen, ist die Lampe aus.
- Wird der Gerätetaster gedrückt, fließt der Strom über den schwarzen Taster, der Stromkreis ist geschlossen, die Lampe leuchtet.
- Wird der UK-Taster gedrückt, fließt der Strom über den roten Taster, der Stromkreis ist geschlossen, die Lampe leuchtet.
- Werden beide Taster gedrückt, so fließt der Strom über beide Taster, die Lampe leuchtet.

Logiktabelle:

<table>
<thead>
<tr>
<th>Gerätetaster</th>
<th>UK-Taster</th>
<th>Zustand Lampe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>An</td>
<td>Aus</td>
<td>Leuchtet</td>
</tr>
<tr>
<td>Aus</td>
<td>An</td>
<td>Leuchtet</td>
</tr>
<tr>
<td>An</td>
<td>An</td>
<td>Leuchtet</td>
</tr>
</tbody>
</table>

→ In der Digitaltechnik nennt man diese Anordnung der Taster in der Schaltung ODER-Schaltung.
Die Reihenschaltung:

Grundfunktion der linken Schaltung

Schwarzer Stromkreis:
(Das schwarze Kabel am UK-Taster ist noch nicht durchgetrennt...)

Nun wird nach dem Gerätetaster die Leitung unterbrochen, und unser UK-Taster eingebaut:

Reihenschaltung

Funktion der neuen Schaltung.
- Im Ruhezustand, beide Taster offen, ist die Lampe aus.
- Wird nur der Gerätetaster gedrückt, fließt der Strom über den schwarzen Taster, aber der rote UK-Taster ist offen. Dadurch der Stromkreis noch unterbrochen, die Lampe bleibt aus.
- Wird nur der UK-Taster gedrückt, fließt der Strom über den roten Taster, der Stromkreis ist durch den offenen Gerätetaster unterbrochen, die Lampe bleibt aus.
- Werden beide Taster gedrückt, so fließt der Strom über beide Taster, der Stromkreis ist nun geschlossen, die Lampe leuchtet.

Logiktabelle:

<table>
<thead>
<tr>
<th>Gerätetaster</th>
<th>UK-Taster</th>
<th>Zustand Lampe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>An</td>
<td>Aus</td>
<td>Aus</td>
</tr>
<tr>
<td>Aus</td>
<td>An</td>
<td>Aus</td>
</tr>
<tr>
<td>An</td>
<td>An</td>
<td>Leuchtet</td>
</tr>
</tbody>
</table>

→ In der Digitaltechnik nennt man diese Anordnung der Taster in der Schaltung UND-Schaltung.
Taster und Schalter

Grundfunktion beider: AN / AUS oder „Betrieb“ oder „Start“ etc...

der wesentliche Unterschied:

Ein **Taster** hat nur einen stabilen Zustand:
- **Aus**: Wird der Taster in Ruhe gelassen, so ist der Stromkreis unterbrochen, das Gerät bleibt aus. Es erfolgt kein Steuerungsimpuls, etc.
- **Der nicht stabile Zustand**:
 - **An**: Nur wenn der Taster gedrückt und gehalten wird, ist der Stromkreis geschlossen, das Gerät ist in Betrieb; Steuersignal wird gesendet

Ein **Schalter** hat zwei stabile Zustände:
- **Aus**: Der Stromkreis ist unterbrochen, das Gerät ist aus.
- **An**: Der Stromkreis ist geschlossen, das Gerät ist in Betrieb.

Das Prinzip der Batterieunterbrechung

Ein technisch denkender Mensch findet das Wort „Batterieunterbrechung“ nicht ganz richtig. Es müsste „Stromkreisunterbrechung“ heißen. Eine Batterie kann nicht gebrochen, nicht unterbrochen werden, aber der Stromkreis, an dem die Batterie zur Versorgung notwendig ist. Wer sich die vorangegangenen Seiten aufmerksam durchgelesen hat, weiß bereits:

Der klassischen Batterieunterbrecher ist eine Reihenschaltung. **Das Spielzeug / Gerät muss an sein, damit der UK- Taster das Spielzeug / Gerät in Betrieb setzen kann. Eben nur so lang, wie er gedrückt wird.**

Im Batteriefach wird hierzu ein Batteriepol isoliert, und jeweils eine Seite der Isolierung mit einem Kabel an den UK- Taster geführt. Dieser schafft dann wieder eine elektrisch leitende Verbindung.

Schema:

Das lilafarbene Plättchen isoliert die Pole zunächst.

Hier verbindet der UK- Taster die unterbrochene Batterieverbindung wieder, so dass der Stromkreis geschlossen wird. Der Geräteschalter muss aber an sein.
Batterieunterbrecher selber herstellen

Das Grundprinzip der Batterieunterbrechung ist also immer das Selbe.

- Eine Batterie im Batteriefach wird an einem Pol unterbrochen / Isoliert.
- Dadurch ist der Stromkreis neben dem Geräteschalter ein weiteres Mal unterbrochen, es entsteht eine Reihenschaltung
- Durch das Anbringen der Kabel, kann unser UK- Taster diesen bedarfsgerecht schließen.

Die nachfolgenden Beispiele haben jeweils Vor- und Nachteile. Sind ausfallsicher oder eher auf „Wackelkontakt“ empfindlich.

Beispiele:

Variante 1

Im Workshop haben wir an 2 Reißzwecke jeweils ein Kabel angelötet. Diese dann mit Karton gegeneinander isoliert.

Vorteil: Kontakt gewährleistet

Nachteil: Wird in der Endausführung etwas dick, so dass dieser nicht in jedes Batteriefach passt:

Variante 2

Besser geht es mit einem Flachbandkabel, das ihr aus einem Altgerät gewinnt:

(Oder altes IDE- Festplattenkabel, Floppykabel aus PC-Bereich geben lassen)
Den Batterieunterbrecher damit wie folgt herstellen:

Kabelbreite (somit Anzahl der Bahnen) der Batteriebreite anpassen und mit Schere (in den Zwischenbereichen, zwischen den Adern) abschneiden. Anschließend auf ca. 2 cm an den beiden äußeren Adern ebenfalls einschneiden und abisolieren, so dass diese als Drähte frei liegen:

der Zwischenbereich wird nicht benötigt, abzwicken.

Nun die beiden Adern auf Vorder- und Rückseite umklappen und schauen, dass diese später den Batteriekontakt und die Batterie elektrisch leitend treffen. Mit Klinkenbuchse auf der anderen Seite ist der Unterbrecher fertig:

Vorteil: Schnell und einfach, nur Buche muss gelötet werden. Dünn und individuell anpassbar

Nachteil: Beim Einsetzen muss darauf geachtet werden, dass unsere Drähte eine leitende Verbindung bekommen. Sind meist stabile drähte, daher ist das Kabel nicht so beweglich als gewöhnliches Kabel.

beide Seiten sehen dann so aus.

Unterbrecher eingesetzt
Variante 3

Dazu benötigt ihr Tonkarton, Schere, Tacker (schmal) Kabel mit UK-Buchse:

Batteriebreiten Streifen Karton abschneiden. 2 Felder, die jeweils den Pol abdecken müssen, markieren – Die Kabelenden abisolieren:

Das Kabelende an je eine Seite antackern.
Wichtig: Die Klammern müssen versetzt angebracht werden, so dass sie sich beim Zusammenklappen nicht berühren.
Dürfen auch je zwei Klammern sein – Hauptsache sie schließen den Unterbrecher beim Zusammenbau nicht kurz.

Nach dem Zusammenklappen ein weiteres Stück Karton so einlegen, dass die Kabel am Ende ebenfalls sicher keinen Kontakt zueinander (Kurzschluss) haben.

Dann einsetzen. Muss nicht, aber kann auch zusammengeklebt werden...
Kabel verbinden ohne löten

Wenn zwei Kabel miteinander verbunden werden sollen, dabei aber auf das Löten verzichtet werden soll, kann auf ein Schrumpfschlauch zurückgegriffen werden.

Prinzip Schrumpfschlauch:

Durch erwärmen mit:
- Heißluftfön
- Feuerzeug
reduziert sich der Durchmesser des Schrumpfschlauches auf die Hälfte bis 1/3tel des ursprünglichen Durchmessers

Dazu wird benötigt:
- Abisolierwerkzeug oder für geübte Bastler: Seitenschneider
- Feuerzeug / Heißluftfön
- Schrumpfschlauch

Dann: Kabelenden abisolieren,

Schrumpfschlauch auf eine Seite drüber

Kabelenden verzwirbeln / verdrillen, und auf eine Seite umklappen.

Schrumpfschlauch drüber und erhitzen, Fertig!
Die erste Adaption

Unsere LED-Lampe wird nun adaptiert

Möglichkeit 1: Reihenschaltung

Unterbrechungspunkt, an dem die UK- Buchse angeschlossen wird, auswählen. Kriterien: Einfaches Hinkommen, Kabel stört nicht.

Stromkreis unterbrechen, und Buchse dazwischen schalten:

Bei der Reihenschaltung ergibt sich nun folgende Funktionsweise:

Der Schalter muss auf „An“ sein UND der UK-Taster gedrückt, damit die LED leuchtet.

Möglichkeit 2: Parallelschaltung

Hierfür MUSS die Buchse parallel an die beiden belegten Schalterkontakte angeschlossen werden

Funktionsweise:

Die LED leuchtet, wenn der UK-Taster gedrückt wird, ODER wenn der Schalter an ist, ODER beides der Fall ist.
Das Beispiel der LED- Lampe übertragen

Nach diesem Grundprinzip haben wir im Workshop einige Schalter und Taster mit einer Parallelschaltung adaptiert.

Ideen, die alle nach dem Selben Prinzip funktionieren:
- Massagekäfer
- Taschenlampe
- Farbwechsellampe
- Effektspielzeug mit An-/Taster bzw. Schalter
- Sprechende Tiere
- ...

Aber - wir hatten auch:

Sensor statt Taster / Schalter

Bei manchen Geräten wird der Effekt durch einen Sensor ausgelöst. Ein Sensor ist für die Elektronik wie unsere Sinne für den Körper. Sie reagieren:
- Auf Temperatur
- Auf Licht
- Auf Geräusche
- Auf Näherung
- Auf Berührung.

Die Adaption von Sensoren mit einem Taster ist für die Elektronik etwas gemein. Während ein Taster / Schalter nur ganz oder gar nicht kennt, nimmt ein Sensor alle Zwischenstufen wahr.

Überbrückt man einen Sensor, so setzen wir dadurch den Sensorwert auf Maximal oder Minimal. Da die Geräte aber sogenannte Schwellenwerte, also Auslösewerte besitzen, werden sie höchstwahrscheinlich reagieren. Auch hier ist eine Adaption möglich. Im Workshop war das die Katze, die auf Licht reagierte hat.

Im folgenden Beispiel die Elektronik einer Echtwachs- Farbwechselkerze. Sobald die Wachskerze angezündet wird, erkennt die Elektronik optisch die Flamme, das Farbwechselspiel beginnt. (Die Elektronik hab ich einer abgebrannten Kerze entnommen)
Steuern anstelle des Ein- und Ausschaltens

Ein CD-Player soll's sein

Vorüberlegung:
Ich möchte mit dem UK-Taster den CD-Player steuern.

- Eine Spannungsunterbrechung (Stromkreisunterbrechung) ist nicht sinnvoll
- Es können alle Knöpfe (Play/Pause, Stop, vorspringen, zurückspringen, nächster Titel, vorheriger Titel) adaptiert werden.
 → Habe mich für Play und Pause entschieden.

Der Play-Pause-Taster hat nun nichts mehr mit der Spannungsversorgung zu tun. Aber er ist eben auch nur ein Taster. Dieser gibt in der Elektronik das Signal weiter, dass dann von einem Chip verarbeitet wird. Auch hier gilt: Ob dieser Steuerimpuls vom Gerätetaster übermittelt wird, oder von unserem UK-Taster: Das ist dem Chip egal...

Hinweis: Die Aaption an und für sich ist die einfachste Übung. Allerdings:
Bis wir an den Play-Knopf kommen, ist der Aufwand am ersten Beispiel erheblich, aber keineswegs unmöglich.

Übrigens: So hab ich das am nachfolgenden Beispiel auch gemacht.
UK Adaption CD- Radio

Prinzipiell kann jeder CD- Spieler in einem tragbaren Radio (oder auch Kompaktanlage) für einen UK- Taster adaptiert werden.

Schwierigkeitsgrad für Anfänger:
Mittel bis schwer (je nach Bauform des Gerätes, am nachfolgenden Beispiel: schwer). Bitte dadurch nicht abschrecken lassen! Die größte Schwierigkeit liegt beim Zerlegen und wieder Zusammensetzen des CD-Radios, nicht bei der UK- Adaption!!!

Weshalb Taster- Adaption?
Bei den früheren Kassettenspielern konnte der Power Link® oder ein Batterieunterbrecher gute Dienste leisten. Die Kassette stoppte und setzte genau da fort, wo sie war. Das Problem bei CD- Spieler: Wenn man die Versorgungsspannung unterbricht, hört die CD zwar auf zu spielen, bei erneuter Spannungsversorgung beginnt die CD bestenfalls wieder am Anfang, oder erwartet das erneute Drücken des Play- Knopfes.

Welche Geräte sind sinnvoll zu adaptieren?
Soll der Schüler / der unterstützt kommunizierende Mensch die Möglichkeit haben, mit dem Taster die CD zum Stoppen zu bringen und mit dem erneuten Tastendruck wieder fortzusetzen, so muss der CD- Spieler eine KOMBINIERTE PLAY/PAUSE- TASTE haben.

Rechtliches & Sicherheit:

Der Anfang
Na ja, nicht mehr das beste Gerät, aber: Im Batteriebetrieb funktioniert es noch einwandfrei, also: Weshalb entsorgen??
Also ran an den Umbau:

1. Strategie:
Um das Gerät zerlegen und anschließend wieder zusammenbauen zu können, empfiehlt es sich, die Schritte gut zu dokumentieren. Je nach dem, welche Erfahrungen vorhanden sind, ist folgende Dokumentation der Arbeitsschritte sinnvoll:

Des weiteren könnt ihr euch eure Arbeitsschritte in der Reihenfolge notieren, wie ihr sie vollzogen habt. Später gilt nämlich: Zusammenbau in umgekehrter Reihenfolge des Zerlegens:

Der zweite Schritt nach dem die Schrauben entfernt wurden: Das Gerät nun vorsichtig öffnen. Es werden verschiedene Kabel sichtbar, die kreuz und quer verlaufen. Die meisten haben auf der Platine eine Steckverbindung. Notiert euch, welche Kabel und wie viele Kabel ihr ausgesteckt habt, um später alle wieder zu verbinden...
Nicht alle Stecker müssen gezogen werden. Nur die, die notwendig sind, damit ihr an das Bedienteil der CD (Play/Pause- Knopf) kommt.

Beispiel für Steckverbindungen:

Schreibt euch mit einem Edding o.ä. Ein/e/n Code / Zahl / Buchstaben / Symbol sowohl auf den Stecker als auch auf die Buchse oder Platine. So findet ihr später die richtigen Paare wieder...

Das wäre dann die Platine hier am Beispiel, auf der sich der Play- Knopf befindet:
Das Zerlegen geht weiter: Immer gut dokumentieren / markieren, bis schließlich nach verschiedenen Arbeitsschritten die Platine frei vor euch liegt:

Platine abschrauben. Manchmal hilft statt des Schreibens auch das Abfotografieren mit dem Smartphone / Tablet, um die Schrauben später wieder zuordnen zu können.

Weitere Stecker sind markiert / Codiert worden. Gleichzeitig aufgeschrieben, wie viele Stecker gezogen worden sind...

Nun liegt das Bedienfeld mit der Play- Pause- Taste vor:

Vorderansicht

Rückansicht

Den Play/Pause- Knopf auf der Rückseite identifizieren: Jeder Taster hat 4 Pole, die quadratisch angeordnet sind:
Der Taster 4 ist unsere Play- Pause- Taste.
Zu den 4 Polen:
Die Gerätetaster haben oft 4 statt 2 Anschlüsse. Zwei davon kommen an unsere UK-Buchse, dann auf den Taster. Welche?
Hintergrundwissen:
Jeweils 2 Anschlüsse / 1 Paar sind innerhalb des Tasters verbunden. Meist ist dies sogar an der Platine zu erkennen, welche das sind. Nehmen wir auf unserem letzten Bild die Lötseite des Tasters 5. (Es sind im übrigen ALLE Taster die selben, auch wenn das Lötbild etwas anders aussieht!)
Die oberen beiden Pole sind mit der Platine durch den „Hellgrünen Strich“ verbunden, ebenso die unteren beiden. Soll heißen: Ob ich oben links oder rechts nehme ist egal, ob ich unten links oder rechts nehme, ist egal. Nur: Ich muss:
– Einen Pol oben
– Einen Pol unten
nehmen. Da kommt die UK- Buchse ran:

Fertig!

Noch was:
Da das Gerät bereits offen ist, habe ich die 230 V Versorgung noch weiter gekappt und das Kabel beidseitig des Gehäuses abgezwickt. Soll ja nun im Batteriebetrieb funktionieren. Das geht, indem man das Kabel ausbaut, die Steckbuchse (Bei manchen
Geräten ist das 230V-Kabel einzustecken) mit Heißkleber füllt und somit unbrauchbar macht. Hier eben abgezwickt:

Die UK-Buchse:

Da das Kunststoff dicker als meine Buchsenlänge ist, hat die Befestigungsmutter nicht mehr ganz drauf gepasst. Abhilfe: Mit einem 10er Bohrer oder Kegelsenker auf der Außenseite vertiefen / ansenken:

Zusammenbau in Rückwärtsreihenfolge eurer Notizen des Zerlegens! Jetzt seid ihr sicher froh um eure sorgfältige Dokumentation.
Selbst gebautes UK-CD-Radio:

Adaptierte Funktion: Play/Pause

Der unterstützte kommunizierende Mensch kann nun mit dem Taster die CD starten, anhalten und durch erneuten Druck an der Stelle fortsetzen, an der diese pausiert.

...nicht im Handel erhältlich!
Eine außergewöhnliche Adaption

Die nachfolgende Idee soll aufzeigen, was technisch machbar ist, aber auch wie unsere Kreativität an rechtliche Grenzen stößt.

Für unsere Menschen, die Hilfsmittel zur Kommunikation und zur Umweltkontrolle verwenden, sind Teilhabe und Selbstbestimmung oft unsere Motivation um für Umbauten aktiv zu werden.

Die Idee: Die Adaption einer Ernährungspumpe, um diese mit dem UK- Taster zu bedienen.

Diese Idee ist aber auch mit Vorsicht zu genießen! Aus ethischer Sicht sicher genial, aus rechtlicher Sicht verboten und sehr fragwürdig, aber aus UK-Adaptionssicht möglich!

Daher: Die Umgebaute Ernährungspumpe darf – auch wenn sie das könnte – nicht mehr zur Sondenernährung eingesetzt werden!

Fazit:
- Ernährungspumpen sind Eigentum der Krankenkasse und prinzipiell tabu
- Sie unterliegen dem Medizinproduktgesetz und technische Änderungen sind verboten.
- Aber: Zum Blumen Gießen kann die Pumpe jedoch zweckentfremdet eingesetzt werden

Ich habe mir eine Pumpe bei einem Online Auktionshaus erworben, um diese außergewöhnliche Möglichkeit vorzustellen:

Wie gehabt: Gerät öffnen

Taster für An/Aus & Start/Stop ausfindig machen. Hier Folientastatur, die an Pfostenleiste führt. Doch welche beiden Kontakte?
Teststecker (aus einem alten, zerlegten Radio) aufstecken und - da es sich um Steuerkontakte handelt - ausprobieren. Werden die richtigen beiden kurzgeschlossen, so schaltet sich die Pumpe an.

Das sind die Beiden. Also ganz unten an die Pfostenleiste Kabel anlöten - So dass der Stecker noch draufgeht!

Stecker drauf, Platz für die UK- Buchse suchen, bohren.

Buchse einbauen, Pumpe wieder zusammenbauen, fertig!

Eine ausgediente Ernährungspumpe (jetzt: Blumengießapparat), die durch langen Druck auf den UK- Taster Ein- und Ausgeschaltet werden kann. Ist sie an, kann mit kurzem Tasterdruck die Pumpe gestartet / gestoppt werden.
Computermaus adaptieren

Viele Schulen haben eine Sammlung ausgedienter, noch funktionsfähiger Peripheriegeräte wie Mäuse, Tastaturen, etc. Die Maus funktioniert in der Regel noch und ist eine gute und günstige Adoptionsgrundlage. Hier ist der Linksklick bei vielen Diashowprogrammen oder Anwendungen nutzbar.

Ein Beispiel, die linke Maustaste einer ausgedienten Maus zu adaptieren:

Versteckte Schrauben: Mäuse haben unter dem Aufkleber oder dem Gleitpad eine oder zwei Schrauben.

Maus zerlegen, um die linke Taste - den Taster auszumachen. Er ist auf der Lötzansicht aber spiegelverkehrt - also rechts!

Glück gehabt: Diese Maus hat nur 2 Tasterkontakte. Hat sie drei, schauen, an welchen Leiterbahnen verbunden sind. Bei 3Pol. Taster ist das in der Regel der mittlere und einer der äußeren...
Die UK-Taste parallel anlöten. Die ursprüngliche Mausfunktion bleibt erhalten.

Platz für die Buchse suchen, einbauen. Passt sie später doch nicht: Einfach nochmals bohren - dann hat die Maus halt 'n Loch mehr!

Das Kabel verlegen und die Kleinteile wieder rein.

Soll die Maus später keine Bewegungsfunktion mehr können müssen, können die Kugel und die Kleinteile auch weggelassen werden. Die Platine kann auch in einer Zigarrenkiste oder einem anderen Gehäuse eingebaut werden.

Fertig:
Variante 2:

(Beispiel unserer UK Maus- Schaltboxen)

Die können oft auch nur die Funktion, die unsere UK- Maus auch kann. Weshalb sind diese so ungemein teuer? Hier ein Beispiel für Experten, sehr hoher Aufwand und Schwierigkeitsgrad, teurer im Bausatz als der Umbau einer fertigen Maus.

Schritte (schematisch aufgeführt)
1. Bauteile einzeln bestellen und Schaltplan dazu besorgen
2. Layout für Platine entwerfen
3. Platine herstellen (ätzen, fräsen)
4. Bestücken
5. Gehäuse entwerfen
6. Einbauen
Neues Schaffen – Eigene Ideen und „Patente“ entwerfen

Beispiel: LED-Würfel

Es wäre toll, wenn mein Schüler / Meine Schülerin mit schwermehrfacher Schädigung würfeln könnte und so an Gesellschaftsspielen teilhaben könnte.

Ja, ist möglich!

In der Elektronik gibt es Bausätze, aber auch fertig gelötete Bausteine, die einfache Grundfunktionen oder komplexe Aufgaben erfüllen.

Den Bausatz gibt’s mit allen erforderlichen Bauelementen und ausführlicher Anleitung

Fertig gelöteter Bausatz, Bestückungsseite und Lötseite
Als Gehäuse wurde eine Schranklampe ausgewählt. Diese kostet ca. 4 Euro, hat einen eingebauten Schalter und ein Batteriefach. Drückt man auf die Fläche, schaltet man die Schranklampe an.

Den Schalter haben wir durch einen Taster ersetzt, Löcher für die LEDs gebohrt – und – parallel zum Taster gleich eine UK- Buchse eingebaut. Es kann nun durch druck auf die „Lampe“ oder durch betätigen des UK- Tasters gewürfelt werden:

- Gibt's nicht im Handel!
- Kosten: keine 10 Euro!
- Wert: „unbezahlbar“

Bausatz: Voice- Recorder

Hier könnte der Play- Knopf adaptiert werden. Selbst der Record- Knopf funktioniert hier so, dass das Modul aufzeichnet, während er gedrückt wird.

Funktionen (Jew. 1 Taster>): Play, Record, Erase, Fwd (Next), Volume
Variante zum Sprachaufzeichnungsmodul

Das Fischer Technik® „Sound & Lights“™ Modul.

Erhältlich im Spielwarenhandel oder Internet.

Kostet ca. 50 Euro, muss mit dem PC über downgeladener Software des Herstellers programmiert werden und hat die Möglichkeit 3 separate Wav-Dateien abzuspielen:

Eignet sich gut für feste Texte / Geräusche wie „Ja“ „Nein“ etc. Für das Abspielen jeder der drei möglichen Nachrichten muss ein separater Taster verwendet werden. Das Programmieren geht nicht mal schnell, dazu eben der PC.

Die beiliegende Beschreibung ist sehr gut, so dass die Verkabelung einfach ist. Alle Teile außer Batterie sind dabei.

Statt den Hersteller- Taster schließen wir die UK- Buchse an:
Bausatz: Näherungsschalter

Der folgende Bausatz ist ein Transponder- Schaltsystem. Diese sind in modernen Autos als Wegfahrsperrre gängig. Der passive (Batterielose) Sender ist im Schlüssel, um das Zündschloss ist eine Antenne.

Der Relaischalter kann an: **Aufzugtaster, Türöffner, Schrankschlösser, etc. angeschlossen werden. Es genügt die Annäherung auf ca. 10 cm zur Antenne.**

Kosten: Ca. 40 Euro
Adaption Fernbedienung

Die Idee: Unterhaltungselektronik mit dem UK- Taster steuern.

Hinweis: von den ca. 30 möglichen Knöpfen einer Fernbedienung kann jeweils nur einer betätigt werden. Daher die Vorüberlegung: Welcher?
Im nachfolgenden Beispiel habe ich eine Universal- Fernbedienung (keine 10 Euro) genommen. Die kann für fast jedes Gerät angelernt werden, so muss ich die Original Gerätefernbedienung nicht zerlegen:

Gerätefernbedienung:

Universalfernbedienung:

Exemplarisch: Programmier-/ Anlerntabelle:
Das Problem: Die Fernbedienung hat keine Schrauben, ist zugeclipst. Die Trennkante suchen und mit einer Spachtel / einem Taschenmesser vorsichtig öffnen:

Das Innenleben:

An diese kann NICHT angelötet werden. Also, wo werden diese mit der Leiterbahn (Kupfer, anlötbare) verbunden. Die Suche beginnt. Übrigens: Ich habe mich für den Kanal vorwärts- Knopf entschieden.
Der Kugelschreiber liegt auf der CH+ Taste. Die schwarzen Linien führen jeweils an eine Leiterbahn. Hier: Sehr dünnes Kabel verwenden. Sehr filigrane Arbeit!!

Hier die Stelle, an der das Tasterfeld an die Leiterbahn führt.

Die hellgrünen Bahnen sind Kupferbahnen mit Schutzlack. Anschleifen, ankratzen, bis das Kupfer zu sehen ist, Kabel auflöten.

Alternative:

Kreativ sein. Es geht auch so:

Bezugsquellen

Der wohl meist zutreffende Satz lautet hier: Internet. Die Nachfolgenden Bilder im Kapitel „Bezugsquellen“, Logos, etc, wurden über die Internetsuche entnommen. Die Logos, Bilder, etc, gehören nicht mir, sind Eigentum der entsprechenden Anbieter... Ich möchte keine Werbung machen, euch aber exemplarische Tipps geben.

Einschlägige Quellen:

Elektronik:

- PEARL: Internet, Katalog und Outletshop:
 - Werkzeug, Elektronikteile, so manchen Ramsch, der UK adaptierbar und „witzig“ ist
- Conrad: Internet, Katalog und Filialen
 - Werkzeug, Bausätze, Elektronik, großes Sortiment
- Pollin: Internet und Katalog:
 - Werkzeug, Elektronik, Bausätze
- Völkner: Internet und Katalog
 - Werkzeug, Elektronik, Bausätze
- Internet: Vellemann für Bausätze (googlen)
- EP: Radio- Fernsehgeschäft vor Ort
 - Je nach dem: Bauteile, Stecker, Kabel...

Was Sinn macht, anzuschaffen: (Modellvielfalt grenzenlos, Preis- und Geschmackssache):

Hier sind 3,5mm Klinkenbuchsen Mono (Einbau- und Kabelversionen) sowie Klinkenstecker 3,5mm zu sehen. Es können auch 3,5mm mono Klinke Stecker/Kupplung- Verlängerungskabel genommen werden, den Teil Abzwicken, der nicht benötigt wird. Somit spart ihr euch das Anlöten des Kabels an die Buchse / den Stecker.
Werkzeuge:

Abisolierzange: Geschmackssache und Preissache. Ausprobieren, mit der ihr am besten klar kommt. Das erste und letzte Bild zeigt eine automatische Abisolierzange.

Kabel: Schaut in eure Altgeräte und verwendet die Kabel wieder. In alten PCs gibt’s schon einige. Wer die Kabel neu anschaffen möchte, geht in ein Modellbaugeschäft, zum Autoteile- Händler (Lautsprecherkabel) oder in ein Elektronikgeschäft. Euer Radio- Fernsehgeschäft vor Ort hilft auch weiter. Technische Bezeichnung für verwendbare Kabel: 2 Adrig, ca. 0,5 - 0,75mm Querschnitt

...viel Erfolg bei euren Vorhaben!

Jürgen Michalek